
Returning BLOB From Embedded Java
- Waiter! There's a BLOB in my Java!

by Przemysław Kruglej
(11-2013)

przemyslawkruglej.com
przemyslaw.kruglej@gmail.com

Table of Contents
1 Returning a BLOB from a Java Method Embedded in a Database ... 3

1.1 Around the fence approach .. 3
1.2 Through the fence, where the future awaits! ... 4

1 Returning a BLOB from a Java Method Embedded in a Database
You're about to learn your future

Oracle supports embedding Java classes in its database. Different SQL types are mapped to
corresponding Java classes to allow us to make the most of this feature. Author of the following
question on StackOverflow:

http://stackoverflow.com/questions/20072410/create-java-sql-blob-instance-in-java-stored-
procedure

had an issue with returning a BLOB object from Java method back to PL/SQL context. In the
beginning, I didn't even think you could return a new BLOB object from an embedded class.
Fortunately, there was a BLOB in my Java, too.

1.1 Around the fence approach

Before I show you an example of how you can achieve the goal of returning new BLOB from Java,
let me present another solution first.

Instead of creating the BLOB itself in Java method, we could pass a temporary OUT BLOB as an
argument to the method and operate on it there. Any changes made to the BLOB in the Java method
will be reflected in the temporary BLOB created in PL/SQL context and passed from there to Java.

A simple Java class doing just that could look like this:

import oracle.sql.BLOB;
import java.io.OutputStream;

public class FortuneBLOB {
 public static void getFortuneBLOB(String secret, BLOB[] fortuneBLOB)
 throws Exception {
 OutputStream fortuneScribe = fortuneBLOB[0].setBinaryStream(0);
 fortuneScribe.write(secret.getBytes());
 fortuneScribe.flush();
 }
}

We also need a corresponding wrapper procedure in PL/SQL:

CREATE OR REPLACE PROCEDURE getOutFortuneBLOB(
 in_secret IN VARCHAR2,
 out_fortune_blob IN OUT NOCOPY BLOB)
 AS LANGUAGE JAVA NAME
 'FortuneBLOB.getFortuneBLOB(java.lang.String, oracle.sql.BLOB[])';

There are a few things to point out here:

• If we want to pass an OUT argument to Java method, it must be declared as an IN OUT
parameter. I've also added the NOCOPY hint so that the parameter is passed by reference, not
by value.

• Furthermore, if this is going to work, the Java method must take an array parameter of the
type of object passed as an OUT parameter.

• Java argument is an array, as mentioned above, but the corresponding PL/SQL parameter is
not.

• To modify passed BLOB, we reference the first element of fortuneBLOB array parameter.

3

http://stackoverflow.com/questions/20072410/create-java-sql-blob-instance-in-java-stored-procedure
http://stackoverflow.com/questions/20072410/create-java-sql-blob-instance-in-java-stored-procedure

We can test if this works with the following code:

DECLARE
 l_blob BLOB;
BEGIN
 DBMS_LOB.CreateTemporary(l_blob, TRUE);
 getOutFortuneBLOB('You will crash another Fortune BLOB today!', l_blob);

 crash_fortune_blob(l_blob);
END;

We can see the following output, proving that the a fortune was inserted into the BLOB:

You will crash another Fortune BLOB today!

If you wonder what the crash_fortune_blob is, it's just a simple procedure for tests which
converts a BLOB parameter to a string and prints it to the standard output:

CREATE OR REPLACE PROCEDURE crash_fortune_blob(in_blob IN BLOB)
AS
BEGIN
 dbms_output.put_line(UTL_RAW.CAST_TO_VARCHAR2(in_blob));
END crash_fortune_blob;

OK, this works. What is the problem with this approach? First of all, if we changed it to also return
the BLOB it is changing, we still wouldn't be able to use it in SQL context, because it has an OUT
parameter (not that functionality to be able to run it in SQL is required, but could be). Secondly, we
need to create the BLOB on our own each time before calling the procedure. We could, on the other
hand, write a wrapper function which would create the BLOB, call the procedure, and then, return the
BLOB. That doesn't seem like a clean solution when we have another way, however.

1.2 Through the fence, where the future awaits!

Instead of passing an OUT parameter to Java, we could actually create the BLOB inside our method,
fill it with content and pass it back.

To do that, we need to:

• Obtain an OracleConnection.

• Use that object to create a temporary BLOB.

• Fill the BLOB and return it.

Here is an example of returning a new BLOB with the given content back to PL/SQL context:

import oracle.sql.BLOB;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.driver.OracleDriver;
import java.io.OutputStream;

public class FortuneBLOB {
 public static BLOB getFortuneBLOB(String secret) throws Exception {
 OracleConnection conn =
 (OracleConnection)new OracleDriver().defaultConnection();

 BLOB fortuneBLOB = BLOB.createTemporary(conn,
 true,
 BLOB.DURATION_SESSION);

4

 OutputStream fortuneScribe = fortuneBLOB.setBinaryStream(0);
 fortuneScribe.write(secret.getBytes());
 fortuneScribe.flush();

 return fortuneBLOB;
 }
}

As you can see, we obtain the default connection and cast it to OracleConnection. Then we are
ready to create our BLOB using the static createTemporary method of the BLOB class. We write the
secret to the BLOB and return it.

To be able to use our method, we also have to create a wrapper function:

CREATE OR REPLACE FUNCTION getFortuneBLOB(secret IN VARCHAR2) RETURN BLOB
 AS LANGUAGE JAVA NAME
 'FortuneBLOB.getFortuneBLOB(java.lang.String) return oracle.sql.BLOB';

No need for an IN OUT parameter any more, and now we use a function instead of a procedure.

Finally, we can test our BLOB Fortune Factory:

DECLARE
 l_blob BLOB;
BEGIN
 l_blob := getFortuneBLOB('You will have a lucky day!');

 crash_fortune_blob(l_blob);
END;

We don't have to create the BLOB on our own, it is enough to call the function and it will be returned
as a result.

Running the code makes the following string appear in the standard output:

You will have a lucky day!

Is that a fortune you were hoping for? No? Sorry, I'm hardly a seer, and I have a BLOB in my Java!

I hope you enjoyed my article. If you have found any errors in it (even typos), you think that I
haven’t explained anything clearly enough or you have an idea how I could make the article better –
please, do not hesitate to contact me, or leave a comment.

5

	1 Returning a BLOB from a Java Method Embedded in a Database
	1.1 Around the fence approach
	1.2 Through the fence, where the future awaits!

