
Top-N Queries
&

The New Row Limiting Clause
11g & 12c

Sponsored by 'c'. Letter 'c'.

by Przemysław Kruglej
11-2013

przemyslawkruglej.com
przemyslaw.kruglej@gmail.com

Table of Contents
1 Getting the Top-N Records From an Ordered Set & The New Row Limiting Clause – 11g & 12c . 3

1.1 NUM. ROWNUM. – before 12c ... 3
1.2 Query. Subquery. (this never gets old) ... 4
1.3 MIT. LIMIT. ... 5

1.3.1 OFFSET ... 6
1.3.1.1 Skip the first three rows .. 6
1.3.1.2 Skip the first three rows in an ordered set .. 6

1.3.2 FETCH ... 7
1.3.2.1 Fetch only the first row from an ordered set .. 7
1.3.2.2 Fetch only the first three rows from an ordered set .. 8
1.3.2.3 Fetch the first three rows from an ordered set, and additional ties on the last
position, if there are any ... 8
1.3.2.4 Fetch only 10% from an ordered set .. 9

1.3.3 OFFSET & FETCH Combined .. 9
1.3.3.1 Get the top three rows after skipping the first record from the top 9
1.3.3.2 Get the top three rows after skipping the first record from the top, but if there are
ties on the last postion, get those additional rows .. 9
1.3.3.3 Offset exceeds number of rows .. 9
1.3.3.4 Fewer recods returned because of the offset (there are 7 rows total, we skip 5, and
want 3) .. 10

2 Further Reading & Useful Links ... 10

1 Getting the Top-N Records From an Ordered Set & The New Row
Limiting Clause – 11g & 12c

and a cup of tea if you're lucky

I bet my cup of raspberry-juiced black tea that, somewhere along your journey with Oracle, you had
to write a query which was supposed to return only the top-n rows from an ordered set. Unlike some
of the other databases, MySQL, for instance, Oracle does not provide a dedicated solution to this
problem.

At least, not before the 12c hit the stage.

Before I introduce you to the nice Row Limiting Clause, let me show you why the first solution that
comes to mind to solve the problem at hand, in Oracle's versions prior to 12c, is not the right one,
and what voodoo tricks one has to perform to achieve the expected result.

1.1 NUM. ROWNUM. – before 12c

We all know Oracle's good ol' rownum fella. Rownum pseudocolumn is assigned to each fetched row
in the result set. Rownum values are consecutive and start from 1. It might be tempting to employ
him, and the ORDER BY clause, to achieve the required functionality:

CREATE TABLE emps (
 id NUMBER NOT NULL,
 first_name VARCHAR2(20) NOT NULL,
 last_name VARCHAR2(20) NOT NULL,
 salary NUMBER NOT NULL
);

INSERT INTO emps VALUES (1, 'Susannah', 'Dean', 8000);
INSERT INTO emps VALUES (2, 'Roland', 'Deschain', 9000);
INSERT INTO emps VALUES (3, 'Eddie', 'Dean', 6000);
INSERT INTO emps VALUES (4, 'Odetta', 'Holmes', 5000);
INSERT INTO emps VALUES (5, 'Detta', 'Walker', 4000);

COMMIT;

SELECT *
 FROM emps
WHERE
 rownum <= 3
ORDER BY salary DESC;

 ID FIRST_NAME LAST_NAME SALARY
---------- -------------------- -------------------- ----------
 2 Roland Deschain 9000
 1 Susannah Dean 8000
 3 Eddie Dean 6000

And it turns out, that... it sometimes works! There is just this little word in between... what does it say?
Huh? Sometimes? That's it – this approach is very wrong. It might, where might is the keyword
here, return the correct result set (and that is why it is so wrong!). If you are a gambler and you
want to take your chances, or you have a particular sense of humour and think that business users
have it too, then use the above approach at your own risk.

However, if sometimes won't do for you, let's see what is actually wrong and how to fix it. What
causes the "sometimes" is the fact, that:

3

The rows are fetched first, and only then they are ordered.The rows are fetched first, and only then they are ordered.

This is because the ORDER BY clause is executed after the conditions of WHERE clause are applied
and the data is returned, ready for ordering. The implication is that the database will first fetch
three rows and then those three rows will be ordered, instead of ordering all the rows that match
the conditions in the WHERE clause and returning top three of them.

Now, do you see why the above approach returns the correct result sometimes?

It depends on the order of fetching the rows. If it happens that the N fetched rows are those N rows
that are in the top, then you will get a correct result – those top-N rows will be ordered after being
retrieved and you will see expected set of rows, and this is just the case in the above example.

Now, to prove that I'm not lying here, let's: delete one of the top-3 records, insert another one in its
place and run the query again:

DELETE FROM emps WHERE first_name = 'Roland';
> 1 rows deleted.

INSERT INTO emps VALUES (6, 'Jake', 'Chambers', 10000);
> 1 rows inserted.

COMMIT;

SELECT *
 FROM emps
WHERE
 rownum <= 3
ORDER BY salary DESC;

 ID FIRST_NAME LAST_NAME SALARY
---------- -------------------- -------------------- ----------
 1 Susannah Dean 8000
 3 Eddie Dean 6000
 4 Odetta Holmes 5000

As you can see, the result is incorrect – we got "Odetta Holmes", where we should get the newly
inserted record with "Jake Chambers". As explained, first three rows were retrieved and then they
were sorted. In this case, one of those three records is not in the top-three. Basic rownum/ORDER BY
approach fails miserably.

1.2 Query. Subquery. (this never gets old)

Since the rows are fetched first and then ordered, maybe we could try another approach. Let's use a
subquery to return an ordered set, and then, in the outer query, restrict the number of rows to three
using rownum:

SELECT id, first_name, last_name, salary
 FROM (
 SELECT emps.*, rownum AS rn
 FROM emps
 ORDER BY salary DESC
)
WHERE rn <= 3;

 ID FIRST_NAME LAST_NAME SALARY
---------- -------------------- -------------------- ----------
 1 Susannah Dean 8000

4

 3 Eddie Dean 6000
 4 Odetta Holmes 5000

O, my! The result is incorrect! I put the rownum inside the subquery on purpose to show you one
more thing you should mind when using rownum pseudocolumn:

ROWNUM value is assigned ROWNUM value is assigned beforebefore ordering results. ordering results.

The proof follows:

SELECT emps.*, rownum
 FROM emps
ORDER BY salary DESC;

 ID FIRST_NAME LAST_NAME SALARY ROWNUM
------- ----------------- --------------- ---------- ----------
 6 Jake Chambers 10000 5
 1 Susannah Dean 8000 1
 3 Eddie Dean 6000 2
 4 Odetta Holmes 5000 3
 5 Detta Walker 4000 4

Since we inserted the record with "Jake Chambers" as the last one, it is in this case fetched as the
last one, and Jake gets value "5" as his rownum. After the records were retrieved and a rownum was
assigned to each of them, the result set was sorted. Because of that fact, condition on rn in the outer
query failed to deliver expected result.

To get our query to finally return what we need, the condition on rownum should be based on the
rownum assigned in the outer query, not on the one assigned in the subquery:

SELECT *
 FROM (
 SELECT *
 FROM emps
 ORDER BY salary DESC
)
WHERE rownum <= 3;

 ID FIRST_NAME LAST_NAME SALARY
---------- -------------------- -------------------- ----------
 6 Jake Chambers 10000
 1 Susannah Dean 8000
 3 Eddie Dean 6000

The correct result, at last! What happens here? First, all rows are ordered in the subquery, and then,
in the outer query, rownum is assigned and only rows with rownum less than or equal to three are
returned as the result set.

1.3 MIT. LIMIT.

Yes, meet the new Row Limiting Clause, introduced in Oracle 12c.

The row limiting clause allows you to put away the old ORDER BY/subquery/rownum approach for a
much more convenient and easier to understand syntax for controlling the number of returned rows.

The new functionality allows you to select the top-N rows from the result set, with an optional
offset from the beginning. The "N" may either be a number of rows to be fetched, or a given
percentage of them.

5

If you want exactly N rows to be returned, you use the ONLY option. On the other hand, if several
rows have the same values in columns used for ordering as the last row fetched (i. e. there a tie on
the last position of the N rows returned), the WITH TIES option will tell Oracle to also fetch those
records.

You cannot use the row limiting clause with either FOR UPDATE clause or in queries with NEXTVAL
or CURRVAL pseudocolumns of a sequence. However, if you declare a cursor with both FOR UPDATE
and row limiting clauses, you won't get an error until you try to open the cursor.

Let's take a look at the syntax:

SELECT *
 FROM emps
ORDER BY salary DESC
OFFSET {NUMBER} {ROW|ROWS}
FETCH {FIRST|NEXT} {<empty>|NUMBER [PERCENT]} {ROW|ROWS} {ONLY|WITH TIES}

Now, let me walk you through it, but before I do that, let's quickly glance at the data the examples
will be based on:

SELECT * FROM emps;

 ID FIRST_NAME LAST_NAME SALARY
---------- -------------------- -------------------- ----------
 1 Susannah Dean 8000
 3 Eddie Dean 6000
 4 Odetta Holmes 5000
 5 Detta Walker 4000
 6 Jake Chambers 10000

1.3.1 OFFSET

OFFSET is an optional clause, which tells Oracle how many rows should be skipped from the
beginning of the result set. The number of the rows is required, and must be followed by either of
the keywords: ROW or ROWS – they are interchangeable, but one of them must be there.

You may not specify a percentage of rows to be skipped – it must be a number of rows.

The OFFSET part of the row limiting clause does not require the FETCH part to be present – if this is
the case, all rows starting with the row at OFFSET + 1 position will be returned. Time for examples.

1.3.1.1 Skip the first three rows

SELECT *
 FROM emps
OFFSET 3 ROW; -- ROW or ROWS - no difference!

 ID FIRST_NAME LAST_NAME SALARY
---------- -------------------- -------------------- ----------
 5 Detta Walker 4000
 6 Jake Chambers 10000

1.3.1.2 Skip the first three rows in an ordered set

SELECT *
 FROM emps

6

ORDER BY salary DESC
OFFSET 3 ROWS; -- ROW or ROWS - no difference!

 ID FIRST_NAME LAST_NAME SALARY
---------- -------------------- -------------------- ----------
 4 Odetta Holmes 5000
 5 Detta Walker 4000

1.3.2 FETCH

Once again, the FETCH part syntax:

FETCH {FIRST|NEXT} {<empty>|NUMBER [PERCENT]} {ROW|ROWS} {ONLY|WITH TIES}

The optional FETCH part of the row limiting clause tells Oracle how many rows should be returned.

The FETCH keyword must be followed by either FIRST or NEXT – there's no difference between them
– they are interchangeable, but either of them is required. FIRST or NEXT can be followed by either:

• a number of rows,

• percentage of rows to be fetched, which functionality is specified by adding the PERCENT
keyword after the number,

• nothing! In this case, the default number of rows will be returned, which is 1.

Next, just like in the OFFSET part, either ROW or ROWS keyword must follow, and, again, they are
interchangeable.

At the end, you must specify if you want the exact number of rows returned with the ONLY
keyword, or, if there are ties in your data on the last position in your result set, also the rows with
the same sort key as the row on the last position, using the WITH TIES keywords.

The FETCH part of the row limiting clause does not require the OFFSET part to be present. If this is
the case, then the row limiting starts with the first row.

Let's add one more row with salary equal to 6000 to present differences between ONLY and WITH
TIES options in the examples that follow after:

INSERT INTO emps VALUES (7, 'Oy', 'the Billy-bumbler', 6000);
COMMIT;

1.3.2.1 Fetch only the first row from an ordered set

SELECT *
 FROM emps
ORDER BY salary DESC
FETCH FIRST ROW ONLY; -- FIRST or NEXT, ROW or ROWS - no difference!

 ID FIRST_NAME LAST_NAME SALARY
---------- -------------------- -------------------- ----------
 6 Jake Chambers 10000

Note: if there was another record with salary equal to 10000, and we would change the ONLY to
WITH TIES in the above example, both records would be returned.

7

1.3.2.2 Fetch only the first three rows from an ordered set

SELECT *
 FROM emps
ORDER BY salary DESC
FETCH NEXT 3 ROWS ONLY; -- FIRST or NEXT, ROW or ROWS - no difference!

 ID FIRST_NAME LAST_NAME SALARY
---------- -------------------- -------------------- ----------
 6 Jake Chambers 10000
 1 Susannah Dean 8000
 3 Eddie Dean 6000

Because we wanted ONLY three rows, "Oy the Billy-bumbler" was not returned, who has the same
salary as "Eddie" on the last position.

What is important here is that the result is not deterministic, because the sorting key (salary in this
case), is not unique, what may lead to a different data being returned when the query is run later,
since there is a tie on the last position in the result set. This depends on the order of rows being
fetched by Oracle and shouldn't be relied on.

1.3.2.3 Fetch the first three rows from an ordered set, and additional ties on the last
position, if there are any

SELECT *
 FROM emps
ORDER BY salary DESC
FETCH FIRST 3 ROWS WITH TIES; -- FIRST or NEXT, ROW or ROWS - no difference!

 ID FIRST_NAME LAST_NAME SALARY
---------- -------------------- -------------------- ----------
 6 Jake Chambers 10000
 1 Susannah Dean 8000
 3 Eddie Dean 6000
 7 Oy the Billy-bumbler 6000

Note, that if there were two records with salary equal to 8000, each of them would be counted, and
as a result, only 3 rows, in this situation, would be returned. Let's insert additional record with
salary equal to 8000:

INSERT INTO emps VALUES (8, 'Susan', 'Delgado', 8000);
COMMIT;

And check the results:

SELECT *
 FROM emps
ORDER BY salary DESC
FETCH FIRST 3 ROWS WITH TIES; -- FIRST or NEXT, ROW or ROWS - no difference!

 ID FIRST_NAME LAST_NAME SALARY
---------- -------------------- -------------------- ----------
 6 Jake Chambers 10000
 1 Susannah Dean 8000
 8 Susan Delgado 8000

8

1.3.2.4 Fetch only 10% from an ordered set

SELECT *
 FROM emps
ORDER BY salary DESC
FETCH FIRST 10 PERCENT ROWS ONLY; -- FIRST or NEXT, ROW or ROWS

 ID FIRST_NAME LAST_NAME SALARY
---------- -------------------- -------------------- ----------
 6 Jake Chambers 10000

Note: row would also be returned if 1 PERCENT was specified – always at least one row will be
returned, if it exists.

1.3.3 OFFSET & FETCH Combined

When used together, the FETCH part starts working on the rows starting at row at position defined by
value of OFFSET + 1. Finally, a couple of examples to show the full potential of row limiting clause.

1.3.3.1 Get the top three rows after skipping the first record from the top

SELECT *
 FROM emps
ORDER BY salary DESC
OFFSET 1 ROW
FETCH FIRST 3 ROWS ONLY;

 ID FIRST_NAME LAST_NAME SALARY
---------- -------------------- -------------------- ----------
 1 Susannah Dean 8000
 8 Susan Delgado 8000
 3 Eddie Dean 6000

1.3.3.2 Get the top three rows after skipping the first record from the top, but if there
are ties on the last position, get those additional rows

SELECT *
 FROM emps
ORDER BY salary DESC
OFFSET 1 ROW
FETCH FIRST 3 ROWS WITH TIES;

 ID FIRST_NAME LAST_NAME SALARY
---------- -------------------- -------------------- ----------
 1 Susannah Dean 8000
 8 Susan Delgado 8000
 3 Eddie Dean 6000
 7 Oy the Billy-bumbler 6000

1.3.3.3 Offset exceeds number of rows

SELECT *
 FROM emps
ORDER BY salary DESC
OFFSET 10 ROWS
FETCH FIRST 3 ROWS ONLY;

9

no rows selected

1.3.3.4 Fewer records returned because of the offset (there are 7 rows total, we skip
5, and want 3)

SELECT *
 FROM emps
ORDER BY salary DESC
OFFSET 5 ROWS
FETCH FIRST 3 ROWS ONLY;

 ID FIRST_NAME LAST_NAME SALARY
---------- -------------------- -------------------- ----------
 4 Odetta Holmes 5000
 5 Detta Walker 4000

2 Further Reading & Useful Links
This is it. You wish! If you'd like to learn far more about the top-n queries and the new row limiting
clause, I highly recommend the following three great articles in Oracle Magazine, all written by
Thomas Kyte:

• http://www.oracle.com/technetwork/issue-archive/2013/13-sep/o53asktom-1999186.html –
overview of three new features of Oracle 12c, including the FETCH FIRST/NEXT and
OFFSET clauses.

• http://www.oracle.com/technetwork/issue-archive/2007/07-jan/o17asktom-093877.html –
about Top-n and pagination queries.

• http://www.oracle.com/technetwork/issue-archive/2006/06-sep/o56asktom-086197.html –
about ROWNUM and limiting results.

Row limiting clause in Oracle Documentation:

• http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_10002.htm#SQLRF556
36 –row limiting clause.

I hope you enjoyed my article. If you have found any errors in it (even typos), you think that I
haven’t explained anything clearly enough or you have an idea how I could make the article better –
please, do not hesitate to contact me, or leave a comment.

10

	1 Getting the Top-N Records From an Ordered Set & The New Row Limiting Clause – 11g & 12c
	1.1 NUM. ROWNUM. – before 12c
	1.2 Query. Subquery. (this never gets old)
	1.3 MIT. LIMIT.
	1.3.1 OFFSET
	1.3.1.1 Skip the first three rows
	1.3.1.2 Skip the first three rows in an ordered set

	1.3.2 FETCH
	1.3.2.1 Fetch only the first row from an ordered set
	1.3.2.2 Fetch only the first three rows from an ordered set
	1.3.2.3 Fetch the first three rows from an ordered set, and additional ties on the last position, if there are any
	1.3.2.4 Fetch only 10% from an ordered set

	1.3.3 OFFSET & FETCH Combined
	1.3.3.1 Get the top three rows after skipping the first record from the top
	1.3.3.2 Get the top three rows after skipping the first record from the top, but if there are ties on the last position, get those additional rows
	1.3.3.3 Offset exceeds number of rows
	1.3.3.4 Fewer records returned because of the offset (there are 7 rows total, we skip 5, and want 3)

	2 Further Reading & Useful Links

