
Three-valued Boolean Logic
The Three-eyed Raven likes it

by Przemysław Kruglej
11-2013

przemyslawkruglej.com
przemyslaw.kruglej@gmail.com

1

Table of Contents
1 Shortly about chickens and roads... ... 3
2 The TRUE-FALSE-NULL Trio aka Three-valued Logic .. 3

2.1 Exception to the rule .. 4
3 Short-circuit Evaluation ... 4
4 Example of short-circuit evaluation not happening ... 5

4.1 Quiz Time! ... 5
4.2 Truth about the truth table and the puzzle solved .. 6

4.2.1 The implication of the truth table in plain language .. 8
5 Conclusion ... 9

2

1 Shortly about chickens and roads...
Why did the chicken cross the road?

Because 1 > NULL AND cross_the_road()...

I bet you have heard about the chicken and you know at least a dozen reasons why it had crossed
the road. I wouldn't bet, though, that you have heard about the three-valued logic. And this one is
interesting, it even makes the chicken cross the road. The answer to the above question could also
be given as: Because it (the chicken) didn't short-circuit evaluate. What does it all mean? Read on.

2 The TRUE-FALSE-NULL Trio aka Three-valued Logic
Boolean expressions in PL/SQL may yield one of two possible values: TRUE or FALSE. True? Null.
False, I mean! That sentence holds only when all of the arguments of an expression are known –
and that means that neither of the arguments IS NULL.

Again, then. Boolean expressions in PL/SQL may yield one of three possible values: TRUE, FALSE
or NULL and that's why the boolean logic in PL/SQL is called the "Three-valued Logic". When can a
boolean expression be evaluated to NULL?

When you compare some value (even a NULL!) to a NULL, what do you expect? Since NULL can be
taken as "unknown value", any comparison with something that is unknown must also yield a NULL
result, which, again, means "result of this comparison is unknown". So, whenever any of the
arguments of an expression is NULL, it is possible (why possible instead of always you'll understand
soon enough) that the whole expression will be evaluated to NULL., which gives a third possible
value of boolean expressions, alongside TRUE and FALSE, and those make a trio!

Let's take a look at the following example:

DECLARE
 v_bool BOOLEAN;
BEGIN
 v_bool := 1 > NULL;

 IF NOT v_bool THEN -- same as IF v_bool = false THEN
 dbms_output.put_line('v_bool = FALSE.');
 ELSIF v_bool IS NULL THEN
 dbms_output.put_line('v_bool IS NULL.');
 END IF;

 IF (NOT v_bool) IS NULL THEN
 dbms_output.put_line('NOT v_bool is also NULL when v_bool is NULL.');
 END IF;
END;

What output will you see when you execute the above block of PL/SQL code?

As I mentioned, comparing anything to NULL yields NULL, so expression 1 > NULL evaluates to
NULL. The expression:

NOT v_bool

Also evaluates to NULL, since what exactly does it mean to negate a NULL? The first branch of the IF
statement is skipped, because it evaluates to NULL, not TRUE. On the other hand, condition in the
next ELSIF branch will hold and the v_bool IS NULL. string will be displayed.

Since NOT v_bool is also NULL, then the second string NOT v_bool is also NULL when v_bool
is NULL. will also be printed.

3

So, we will see the following output:

v_bool IS NULL.
NOT v_bool is also NULL when v_bool is NULL.

2.1 Exception to the rule

OK, I said that comparing anything to NULL yields NULL. I have to mention here the DECODE
function, which is an exception to that rule. The DECODE function returns a value for corresponding
expression if the first argument of DECODE is equal to value of that expression. DECODE is special,
because if the first argument is NULL, and one of the expressions evaluates to NULL, then they will be
treated as equal:

DECLARE
 v_val1 NUMBER;
 v_val2 NUMBER;
 v_val3 NUMBER;
 v_bool BOOLEAN;
BEGIN
 v_bool := v_val1 = v_val2;

 – DECODE will return:
 - a) 1 if v_val1 is equal to v_val2
 - b) 0 otherwise
 SELECT DECODE(v_val1, v_val2, 1, 0)
 INTO v_val3
 FROM dual;

 IF v_bool IS NULL THEN
 dbms_output.put_line('v_bool IS NULL.');
 END IF;

 IF v_val3 IS NULL THEN
 dbms_output.put_line('Result of DECODE: NULL');
 ELSE
 dbms_output.put_line('Result of DECODE: ' || v_val3);
 END IF;
END;

The output:

v_bool IS NULL.
Result of DECODE: 1

As you can see, normally comparison of two uninitialized variables (line #7) yields a NULL result (as
proven by the IF statement in line #16). However, the DECODE function behaves differently – it
treats two NULL values as equal and returns 1 instead of 0.

3 Short-circuit Evaluation
Short-circuit evaluation is the ability to skip execution and/or calculation of the second argument of
an expression. It happens when the value of whole expression can be determined just by finding out
the value of its first argument:

IF condition1 AND condition2 THEN
 -- code executed when both
 -- arguments of the above expression are TRUE
ELSE

4

 -- code executed when
 -- one of the arguments is either FALSE or NULL
END IF;

In the above example, if the value of condition1 was either FALSE or NULL, then the condition2
would not be evaluated at all – it would be skipped, because it is already known that the whole
expression condition1 AND condition2 can not be TRUE. Since there is an ELSE branch, the code
associated with it would be executed. What is important to note here is that the ELSE branch is
executed when all of the conditions in IF..THEN..ELSIF..THEN branches evaluate to either FALSE
or NULL.

Short-circuit evaluation also works with the OR operator:

IF condition1 OR condition2 THEN
 -- code executed when either
 -- of the arguments of the above expression is TRUE
ELSE
 -- code executed when neither of the arguments is TRUE
END IF;

Like previously, condition2 will not have to be evaluated when the value of condition1 can
determine the result of the whole expression, regardless of the value of condition2. This will
happen when condition1 will be evaluated to TRUE, because value of whole expression will be
TRUE irrespectively of the value of condition2.

Why do I explain all of this? And where does the chicken fit in all of this?

4 Example of short-circuit evaluation not happening
What if I told that the short-circuit evaluation doesn't always take place? What if I told you it
depends on the context of the evaluated expression? Well, I would be telling you the truth.

Before I talk about the details, let's see if the chicken will cross the road after all (and if so, will it
come back?).

4.1 Quiz Time!

Given the following block of PL/SQL code, what output is going to be displayed after its execution?

DECLARE
 v_bool BOOLEAN;

 FUNCTION cross_the_road RETURN BOOLEAN
 AS
 BEGIN
 dbms_output.put_line('Chicken crosses the road.');
 RETURN TRUE;
 END;
BEGIN
 v_bool := 1 > NULL AND cross_the_road();

 IF 1 > NULL AND cross_the_road() THEN
 dbms_output.put_line('Chicken is back.');
 ELSE
 dbms_output.put_line('Erm... where did it go?!');
 END IF;
END;

5

Possible answers:

a) Chicken crosses the road.
Chicken crosses the road.
Chicken is back.

b) Chicken crosses the road.
Chicken crosses the road.
Erm... where did it go?!

c) Chicken crosses the road.
Erm... where did it go?!

d) Chicken crosses the road.
Chicken is back.

e) Erm... where did it go?!

f) None of the above, because an error will be thrown.

The answer is in the chapter that follows. If you're not sure, I can give you a hint – the key to give
the correct answer lies in the truth table:

x y x AND y x OR y NOT x

TRUE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE FALSE

TRUE NULL NULL TRUE FALSE

FALSE TRUE FALSE TRUE TRUE

FALSE FALSE FALSE FALSE TRUE

FALSE NULL FALSE NULL TRUE

NULL TRUE NULL TRUE NULL

NULL FALSE FALSE NULL NULL

NULL NULL NULL NULL NULL

4.2 Truth about the truth table and the puzzle solved

The correct answer to the puzzle is c). I'm curious if that was your choice. Either way, let me walk
you through what exactly is happening in that piece of code.

DECLARE
 v_bool BOOLEAN;

 FUNCTION cross_the_road RETURN BOOLEAN
 AS
 BEGIN
 dbms_output.put_line('Chicken crosses the road.');
 RETURN TRUE;
 END;
BEGIN
 v_bool := 1 > NULL AND cross_the_road();

 IF 1 > NULL AND cross_the_road() THEN
 dbms_output.put_line('Chicken is back.');
 ELSE

6

 dbms_output.put_line('Erm... where did it go?!');
 END IF;
END;

The most important line in that code is line #11. You could've expected that short-circuit evaluation
will take place here since the value of the first argument (1 > NULL) yields NULL, and the execution
of the cross_the_road function can be skipped.

As I have mentioned, whether short-circuit evaluation will be utilized, or not, depends on the
context in which an expression is to be evaluated. Take a look once again at the truth table. I have
marked the interesting results of boolean expressions:

x y x AND y x OR y NOT x

TRUE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE FALSE

TRUE NULL NULL TRUE FALSE

FALSE TRUE FALSE TRUE TRUE

FALSE FALSE FALSE FALSE TRUE

FALSE NULL FALSE NULL TRUE

NULL TRUE NULL TRUE NULL

NULL FALSE FALSE NULL NULL

NULL NULL NULL NULL NULL

Now, when a value of an expression with AND operator is assigned to a variable, and the first
argument of that expression is NULL, the short-circuit evaluation will not take place. Why?
Because, even though the first argument is NULL, the value of the whole expression doesn't have to
be NULL! It may, in fact, have one of two possible values: NULL or FALSE.

As pointed out in the truth table, when the first argument is NULL and we use the AND logical
operator, the value of an expression is determined by expression's second argument:

• if the second argument is either TRUE or NULL, the whole expression will be evaluated to
NULL,

• if the second argument is FALSE, then the whole expression is FALSE as well.

I've said in the beginning of my article that, when the first argument is NULL, the whole expression
may be NULL as well, and now you see the reason – it may be NULL, but it may also be FALSE.

The reason there are those two possible values is because when we use AND operator with NULL and
TRUE arguments, then we can't really say whether the whole expression is TRUE or NULL. Since NULL
means unknown, TRUE and unknown must also be unknown.

I'd also like to point out that, when OR operator is used, result of expression involving NULL and
FALSE/NULL arguments also yields NULL, because we can't say if NULL OR FALSE/NULL is FALSE or
TRUE – it is, once again, unknown.

What this all means is that when you assign a value of an expression to a variable, the short-circuit
evaluation will not be utilized if the first argument evaluates to NULL, because to determine the
value of the whole expression, PL/SQL must also calcuate the value of the second argument.

Now, let's look once again at IF control statement. The code associated with a branch is executed if

7

the corresponding condition is evaluated to TRUE, and only TRUE. Because of that, when the first
argument of an expression using AND operator in IF's condition is NULL, the short-circuit
evaluation is utilized – it doesn't matter if the whole expression is NULL or FALSE, because PL/SQL
already knows that the whole expression can not be TRUE and evaluation of second argument can be
skipped.

This is the difference between contexts – when you assign value of an expression to a variable, the
value of the whole expression must be calculated if the first argument is NULL, whereas in an IF
statement, it is enough that the first argument will yield NULL to move to the next IF branch
condition.

OK, let's get back to the code. As I have shortly explained, in line #11:

v_bool := 1 > NULL AND cross_the_road();

The short-circuit evaluation will not take place, because the first argument of the expression
evaluates to NULL and the cross_the_road function will be called, and the

Chicken crosses the road.

text will be displayed.

On the other hand, in line #13:

IF 1 > NULL AND cross_the_road() THEN

the short-circuit evaluation will be utilized – the 1 > NULL argument will be evaluated to NULL, the
whole expression then can not be TRUE, so the execution of cross_the_road function can be
skipped, so neither will the text "Chicken crosses the road." be printed again nor will we see
the "Chicken is back." in the standard output.

Since the condition in the IF branch doesn't hold, the execution flow moves to the ELSE branch, and
the:

Erm... where did it go?!

string is printed.

So, the correct answer is c) – we will see the following output:

Chicken crosses the road.
Erm... where did it go?!

4.2.1 The implication of the truth table in plain language

When an expression with AND operator is being evaluated and:

1. First argument is evaluated to NULL, then:

a) The whole expression is NULL, if the second argument is either TRUE or NULL.

b) The whole expression is FALSE, if the second argument is FALSE.

2. First argument is evaluated to FALSE, then

a) The whole expression is FALSE, regardless of the value of the second argument.

3. First argument is evalutaed to TRUE, then:

a) The whole expression is NULL, if the second argument is NULL.

8

b) The whole expression is TRUE, if the second argument is TRUE.

c) The whole expression is FALSE, if the second argument is FALSE.

When an expression with OR operator is being evaluated and:

1. First argument is evaluated to NULL, then:

a) The whole expression is NULL, if the second argument is either FALSE or NULL.

b) The whole expression is TRUE, if the second argument is TRUE.

2. First argument is evaluated to FALSE, then

a) The whole expression is NULL, if the second argument is NULL.

b) The whole expression is TRUE, if the second argument is TRUE.

c) The whole expression is FALSE, if the second argument is FALSE.

3. First argument is evalutaed to TRUE, then:

a) The whole expression is TRUE, regardless of the value of the second argument.

For each of the cases, I have put the information whether the short-circuit evaluation will take place
or not in different contexts in the table below. Yes stands for "short-circuit will take place" and No
means it won't:

x y
Assigning value

of an expression to a variable
Expression evaluated

for IF control statement
x AND y x OR y x AND y x OR y

TRUE TRUE No Yes No Yes

TRUE FALSE No Yes No Yes

TRUE NULL No Yes No Yes

FALSE TRUE Yes No Yes No

FALSE FALSE Yes No Yes No

FALSE NULL Yes No Yes No

NULL TRUE No No Yes No

NULL FALSE No No Yes No

NULL NULL No No Yes No

As already mentioned, the short-circuit evaluation will not take place in an assignment when AND
operator is used and first argument is evaluated to NULL, whereas, in the same situation, the short-
circuit evaluation will be utilized in an IF statement.

5 Conclusion
As promised, the three-valued logic made the chicken cross the street (and short-circuit evaluation
made it stay there).

It is important to stress the importance of the the short-circuit evaluation not taking place in some
cases. You should avoid the situations when the logic in your code depends on whether the short-
circuit evaluation will be utilized or not. Whether the second argument of an expression depends on
the first not being NULL or evaluating it takes a long time, you should mind that it may not work as
you would expect in the first place.

9

Hoping you enjoyed my article. If you have found any errors in it (even typos), you think that I
haven't explained anything clearly enough or you have an idea how I could make the article better –
please, do not hesitate to contact me, or leave a comment.

10

	1 Shortly about chickens and roads...
	2 The TRUE-FALSE-NULL Trio aka Three-valued Logic
	2.1 Exception to the rule

	3 Short-circuit Evaluation
	4 Example of short-circuit evaluation not happening
	4.1 Quiz Time!
	4.2 Truth about the truth table and the puzzle solved
	4.2.1 The implication of the truth table in plain language

	5 Conclusion

